
Correlation Clustering with Low-Rank Matrices

Nate Veldt
Purdue University

Mathematics Department
West Lafayette, IN

lveldt@purdue.edu

Anthony Wirth
The University of Melbourne
Computing and Information

Systems Department
Parkville, VIC, Australia

awirth@unimelb.edu.au

David F. Gleich
Purdue University Computer

Science Department
West Lafayette, IN

dgleich@purdue.edu

ABSTRACT
Correlation clustering is a technique for aggregating data
based on qualitative information about which pairs of objects
are labeled ‘similar’ or ‘dissimilar.’ Because the optimiza-
tion problem is NP-hard, much of the previous literature
focuses on finding approximation algorithms. In this paper
we explore how to solve the correlation clustering objective
exactly when the data to be clustered can be represented by
a low-rank matrix. We prove in particular that correlation
clustering can be solved in polynomial time when the un-
derlying matrix is positive semidefinite with small constant
rank, but that the task remains NP-hard in the presence
of even one negative eigenvalue. Based on our theoretical
results, we develop an algorithm for efficiently “solving” low-
rank positive semidefinite correlation clustering by employing
a procedure for zonotope vertex enumeration. We demon-
strate the effectiveness and speed of our algorithm by using
it to solve several clustering problems on both synthetic and
real-world data.
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1. INTRODUCTION
Correlation clustering is a method for partitioning a dataset

based on pairwise information that indicates whether pairs of
objects in the given dataset are ‘similar’ or ‘dissimilar.’ Typ-
ically correlation clustering is cast as a graph optimization
problem where the nodes of a graph represent objects from
the dataset. In its most basic form, the graph is assumed to
be complete and unweighted, with each edge being labeled
‘+’ or ‘−’ depending on whether the two nodes are ‘similar’
or ‘dissimilar.’ Given this input, the objective is to partition
the graph in a way that maximizes the number of agree-
ments, where an agreement is a ‘+’ edge that is included
inside a cluster, or a ‘−’ edge that links nodes in different
clusters. An equivalent objective, though more difficult to
approximate, is the goal of minimizing disagreements, i.e.,
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‘similar’ nodes that are separated or ‘dissimilar’ nodes that
are clustered together. A more general form of correlation
clustering associates each pair of objects with not only a label
but also a weight indicating how similar or dissimilar the two
objects are. In this case, the goal is to maximize the weight
of agreements or minimize the weight of disagreements.

One attractive property of this clustering approach is that
the number of clusters formed is determined automatically
by optimizing the objective function, rather than being a
required input. In practice, correlation clustering has been
applied in a wide variety of disciplines to solve problems such
as cross-lingual link detection [28], gene clustering [6], image
segmentation [15], and record linkage in natural language
processing [18].

Because correlation clustering is NP-hard [5], much of the
previous literature has focused on developing approximation
algorithms. In this paper, we consider a new approach,
exploring instances of the problem where the weighted labels
can be represented by a low-rank matrix. Studying this
case provides a new means for dealing with the intractability
of the problem, and also allows us to apply the framework
of correlation clustering in the broader task of analyzing
low-dimensional datasets.

Our Contributions: In this paper we prove that corre-
lation clustering can be solved in polynomial time when the
similarity labels can be represented by a positive semidefinite
matrix of low rank. We also show that the problem remains
NP-hard when the underlying matrix has even one nega-
tive eigenvalue. To solve correlation clustering problems in
practice, we implement an algorithm called ZonoCC based
on the randomized zonotope vertex enumeration procedure
of Stinson, Gleich, and Constantine [26]. This algorithm is
capable of optimally solving low-rank positive semidefinite
correlation clustering. It is most useful, however, when it is
truncated at a fixed number of iterations in order to quickly
obtain a very good approximation – sans formal guarantee –
to the optimal solution. We demonstrate the effectiveness
of ZonoCC by obtaining clusterings for both synthetic and
real-world datasets, including social network datasets and
search-query data for well-known computer science confer-
ences.

2. PROBLEM STATEMENT
We begin with the standard approach to correlation clus-

tering by considering a graph with n nodes where edges are
labeled either ‘+’ or ‘−’. Typically the correlation clustering
objective is cast as an integer linear program in the follow-
ing way. For every pair of nodes i and j we are given two



nonnegative weights, w+
ij and w−ij , which indicate a score for

how similar the two nodes are and a score for how dissimilar
they are respectively. Traditionally, we assume that only one
of these weights is nonzero (if not, they can be adjusted so
this is the case without changing the objective function by
more than an additive constant). For every pair of nodes i, j
we introduce a binary variable dij such that

dij =

{
0 if i and j are clustered together ;

1 if i and j are separated .

In other words, dij = 1 indicates we have cut the edge be-
tween nodes i and j. The maximization version of correlation
clustering is given by the following ILP (integer linear pro-
gram). We include triangle constraints on the dij variables
to guarantee that they define a valid clustering on the nodes.

maximize
∑
i<j w

+
ij(1− dij) +

∑
i<j w

−
ijdij ,

subject to dij ∈ {0, 1},
dik ≤ dij + djk for all i, j, k.

(1)

The first term counts the weight of agreements from clustering
similar nodes together, and the second counts the weight of
agreements from dissimilar nodes that are clustered apart.

For convenience, we encode the weights of a correlation
clustering problem into a matrix A by defining Aij = w+

ij −
w−ij . We think of A as the adjacency matrix of a graph that
has both positive and negative edges. We can express the
objective function in terms of A as

maximize −
∑
i<j Aijdij +

∑
i<j w

+
ij .

Since the second term is only a constant, to solve this problem
optimally, we can focus on just solving this ILP:

maximize −
∑
i<j Aijdij

subject to dij ∈ {0, 1},
dik ≤ dij + djk for all i, j, k.

(2)

We can provide an alternative formulation of the correla-
tion clustering objective by introducing an indicator vector
xi ∈ {e1, e2, e3, . . . , en} for each node i, where ej is the jth

standard basis vector in Rn. This indicates which cluster
node i belongs to. Unless each node ends up in its own
singleton cluster, some of these basis vectors will be unused.
We can then make the substitution dij = 1 − xTi xj , since
xTi xj will be 1 if both nodes are in the same cluster but will
be 0 otherwise. After making this substitution and dropping
a constant term in the objective, the problem becomes

maximize
∑
i<j Aijx

T
i xj

subject to xi ∈ {e1, . . . , en} for all i = 1, . . . , n .
(3)

3. THEORETICAL RESULTS
In this section, we present new results on the complexity

of correlation clustering under low-rank assumptions. In
particular, we prove the problem remains NP-hard when the
underlying matrix has even one negative eigenvalue. We are
more concerned, however, with solving correlation cluster-
ing on low-rank positive semidefinite adjacency matrices, in
which case we give a polynomial time solution. This scenario
is analogous to results for other related optimization problems
that admit polynomial-time solutions for low-rank positive
semidefinite input matrices [10, 17], and is also a particularly
natural assumption for the correlation clustering objective.

For example, if the adjacency matrix represents a correlation
matrix (i.e., each entry is the Pearson correlation coefficient
between two random variables), the input is already positive
semidefinite. So taking a low-rank approximation will yield
the type input matrix studied here; we give two examples of
correlation clustering on a correlation matrix in Section 5.

Even when the input is not a correlation matrix, we note
that the correlation clustering objective does not depend on
the diagonal of the input matrix, so we are able to shift the
diagonal entries until the matrix is positive definite before
taking a low-rank approximation. Though the quality of
the approximation will vary depending on how much the
diagonal needs to be increased, this provides a means to
apply our methods to get an approximate solution for every
full-rank dataset.

3.1 Positive Semidefinite CC
The simplest case to consider is when A is rank-1 with

one positive eigenvalue. Because A is symmetric, we can
express it as A = vvT for some v ∈ Rn. In this case a
perfect clustering always exists and is easy to find: one
cluster includes all nodes with negative entries in v, while
the other includes those with positive entries. Nodes i and j
are similar if and only if Aij > 0, which is true if and only
if entries i and j of the vector v have the same sign. So
this simple two clustering agrees perfectly with the similarity
labels.

In fact, the rank-1 posotive semidefinite correlation clus-
tering problem is equivalent to maximizing a quadratic form
xTAx in binary variables x ∈ {−1, 1}n, under the assump-
tion that A is rank-1. This maximization problem can be
solved in polynomial time for every fixed low rank, d [17].
While this gives us a nice result for correlation clustering on
rank-1 matrices, it does not generalize to higher ranks as it
only can partition a graph into exactly two clusters.

If the matrix A is positive semidefinite but of rank d > 1,
there is no guarantee that a perfect partitioning exists, and
the optimal clustering may have more than two clusters. We
still begin by expressing A in terms of low rank factors,
i.e., A = V V T for some V ∈ Rn×d. Each node in the
signed graph can now be associated with one of the row
vectors v1,v2, . . . ,vn ∈ Rd×1 of V . The similarity scores
between nodes i and j are given by Aij = vTi vj , so we can
view this version of correlation clustering as the following
vector partitioning problem. Separate n points, or vectors,
in Rd based on similarity scores given by dot products of the
vectors:

Theorem 1. If A = V V T for V ∈ Rn×d, then problem
(3) can be solved by partitioning the row vectors v1,v2, . . .vn ∈
Rd×1 of V into d+ 1 clusters {C1, C2, . . . , Cd+1} to solve

maximize
∑d+1
i=1 ‖Si‖

2
2 , (4)

where we refer to the vector Si =
∑

v∈Ci
v as the sum point

of the ith cluster (in an empty cluster, defined to be the zero
vector).

Proof. We will show in two steps that when A = V V T ,
the clustering that maximizes objective (3) also maximizes
objective (4). The first step is to prove that (3) is equivalent
to maximizing the sum of squared norms of sum points, where
the maximization is taken over every possible clustering.
Second, we show that the objective function is maximized
by a clustering with d+ 1 or fewer clusters.



By doubling the objective function in (3) and adding the
constant

∑n
i=1 vTi vi, we obtain a related objective function

that is maximized by the same clustering:

2
∑
i<j

vTi vj(x
T
i xj) +

n∑
i=1

vTi vi =

n∑
i=1

n∑
j=1

vTi vj(x
T
i xj) . (5)

Since xi and xj are indicator vectors, identifying which
clusters nodes i and j belong to, the right-hand side of
equation (5) only counts the product vTi vj when xTi xj = 1.
So we are restricting our attention to inner products between
vectors that belong to the same cluster. The contribution to
the objective from cluster Ck is∑

a∈Ck

∑
b∈Ck

vTa vb = STk Sk = ||Sk||22 .

Summing over all clusters completes step one of the proof.
To see that the number of clusters is bounded, observe

that in the optimal clustering all the sum points must have
pairwise non-positive dot products. Otherwise, there would
exist distinct clusters Ci and Cj with STi Sj > 0, and therefore

(Si+Sj)
T (Si+Sj) = STi Si+2STi Sj+STj Sj > STi Si+S

T
j Sj .

Hence we could get a better clustering by combining Ci
and Cj . Now, if there were an optimal clustering with
two sum points that are orthogonal – STi Sj = 0, we could
combine the two clusters without changing the objective
score. Therefore, among all optimal clusterings, the one with
the fewest clusters has the property that all sum points have
pairwise negative dot products. The bound of d+ 1 clusters
then follows from the fact that the maximum number of
vectors in Rd with pairwise negative inner products is d+ 1
(Lemma 8 of Rankin [25]). �

It is worth noting that despite a significant difference in
motivation, our new objective function (4) is nearly identical
to one used by Newman as a means to approximately solve
maximum modularity clustering [19]. This is an interesting
new connection between two clustering techniques that were
not previously known to be related. Newman and Zhang’s
work contains further information on modularity [29, 19].

The importance of Theorem 1 is that it expresses the low-
rank positive semidefinite correlation clustering problem as
a convex functional on sums of vectors in Rd. Our problem
is therefore an instance of the well-studied vector partition
problem [20, 13]. Onn and Schulman showed that for dimen-
sion d and a fixed number of clusters p, this problem can
be solved in polynomial time by exploring the O(nd(p−1)−1)
vertices of a d(p− 1)-dimensional polytope called the signing
zonotope.

Corollary 1. Correlation clustering with rank-d positive
semidefinite matrices (PSD-CC) is a special case of the vector
partition problem with d+1 clusters, and is therefore solvable
in polynomial time.

We later show how to construct a polynomial-time al-
gorithm for PSD-CC by reviewing the results of Onn and
Schulman [20]. Before this, we observe a second theorem,
which highlights an important geometric feature satisfied by
the optimal clustering. It provides a first intuition as to how
we can solve the problem in polynomial time.

Theorem 2. In the clustering Copt, which maximizes (4),
the n row vectors of V will be separated into distinct convex

cones that intersect only at the origin. More precisely, if
vectors vx1 ,vx2 , . . . ,vxk are all in the same cluster Cx in
Copt, and vy ∈ Rd is another row vector that satisfies vy =∑k

i=1 civxi for ci ∈ R+
0 , then vy is also in cluster Cx.

Proof. First notice that in Copt, every vector v must be
more similar to its own sum point than to any sum point of
a different cluster. To see this, assume that v is in cluster
Ci with sum point Si, but v is more similar to another sum
point Sj , i.e.

vTSi < vTSj .

The contribution to the objective from the two sum points
is STi Si + STj Sj . If we move v from cluster Ci to cluster Cj ,
the contribution to the objective for the two new clusters is

(Si − v)T (Si − v) + (Sj + v)T (Sj + v) =

STi Si − 2vTSi + vTv + STj Sj + 2vTSj + vTv

which is a higher score since vTSi < vTSj , contradicting the
optimality of the first clustering. So in the optimal clustering
every point is more similar to its own sum point than any
other sum point.

Given this first observation we will now prove the main
result of the theorem by contradiction. Assume that we have
k points vx1 ,vx2 , . . . ,vxk that in Copt are in cluster Cx with
sum point Sx. Let vy be another point in the dataset such

that vy =
∑k
i=1 civxi where ci > 0 for i = 1, 2, · · · , k, and

assume that vy is in a different cluster Cy that has sum
point Sy. By our first observation, every point in Cx must
be more similar to Sx than Sy, so for 1 ≤ i ≤ k we have that
vTxiSx > vTxiSy, which implies civ

T
xiSx > civ

T
xiSy, for any

positive scalar ci. It follows that

vTy Sx =

k∑
i=1

civ
T
xiSx >

k∑
i=1

civ
T
xiSy = vTy Sy.

This indicates that vy is more similar to Sx than to the
sum point of the cluster to which is belongs, which is a
contradiction.

�
Theorem 2 implies that we can find an optimal clustering

in polynomial time by checking every possible partitioning of
the vectors into convex cones. By Theorem 2.7 of Klee [16],
every pair of cones can be separated by a hyperplane through
the origin. Furthermore, Cover [9] proved that for every set
of n points in Rd, there are O(nd−1) such hyperplanes that
split the points into two groups. This means that to cluster
the points into d + 1 convex cones, we must choose

(
d+1
2

)
of the O(nd−1) hyperplanes so that each distinct pair of
clusters is separated by a hyperplane. This gives us a total of

O(n(d−1)(d+1
2 )) ways to cluster the points into d+ 1 convex

cones, which we can enumerate in polynomial time. When
d = 2, we can efficiently find the boundaries of the optimal
convex cones by considering the n rays that each connect the
origin to one of the n points. Since there are at most three
clusters in this case, we can solve the problem by testing
O(n3) triplets of points as possible separators for the clusters,
each time evaluating the objective. A visualization of this
process is shown in Figure 1. Though we can make this
procedure very efficient for the two-dimensional case, it is
significantly less efficient for dimension d greater than 2, so
we resort to the methods proposed by Onn and Schulman [20],
which we review in Section 4.



Figure 1: The three-clustering that solves a small
rank-2 correlation clustering problem. Each cluster
is shown by a different color, and can be delimited
on each side by rays through the origin. By selecting
the right combination of three points (circled in red),
we will be able to find the optimal clustering.

3.2 Rank-1 Negative Semidefinite
When A has rank 1 and its nonzero eigenvalue is negative,

we know A = −vvT for some v ∈ Rd. This changes the
objective (4) in three ways: the negative sign converts the
maximization to a minimization, the entries of v are real
numbers rather than row vectors, and the upper bound of d+1
clusters no longer applies. Solving the Rank One Negative
Eigenvalue Correlation Clustering problem (RONE-CC) is
therefore equivalent to

min
C,k

k∑
i=1

( ∑
v∈Ci

v
)2
. (6)

The following theorem regarding RONE-CC is analogous
to a result of Papailiopoulos et al., who use a reduction from
Subset Sum to prove that the Densest-k-Subgraph problem
is NP-hard for input matrices of rank-1 with one negative
eigenvalue [22]. Our result relies on a reduction from the
related Partition problem, and accounts for the fact that in
an instance of correlation clustering we must optimize over
the set of partitionings with arbitrarily many clusters.

Theorem 3. Rank-one Negative Eigenvalue Correlation
Clustering is NP-Complete.

Proof. Given that general correlation clustering is NP-
Complete, we know that the decision version of RONE-CC
must also be in NP. To show the problem is NP-hard, we
can use a reduction from the Partition problem, one of the
NP-hard problems listed by Garey and Johnson [11]. For
this problem we are given a multiset of n positive integers
and seek to partition the set into subsets of equal sum.

Consider a multiset of n positive integers. Let s be the
smallest integer and B be the sum of all n integers. We
assume s and B are both even–if this is not the case we can
multiply all numbers in the set by two so that this assumption
is satisfied. Letting M = B/2−s/2, we add two copies of −M
to the input: now the total sum of the input integers is s.
We can show that the optimal solution to RONE-CC on this
input will perfectly partition the n positive integers into two
subsets of equal sum if such a perfect partition exists.

Assume the positive integers can be split into two subsets
of sum B/2. If we include exactly one copy of the −M values
with each of these two subsets, then each cluster sums to
B/2 −M = s/2. The RONE-CC objective corresponding

to this two-clustering is 2 (s/2)2 = s2/2. We now show
that every other clustering yields a worse objective value.
Clearly, any clustering with one copy of −M in each cluster
that does not equally split the positives will have objective
score > s2/2. If we cluster all integers together, the sum
is s, and the objective would be s2 > s2/2. If on the other
hand we consider a two-clustering where both −M values
are in the same partition, or any clustering with more than
two clusters, then there must exist some cluster with only
positive integers. This cluster has sum at least s, leading
to an objective of at least s2. The best option is therefore
to form two clusters, each of which contains one of the −M
values and a subset of the n positive integers summing to
B/2. �

4. ALGORITHMS
In this section we show how to obtain a polynomial-time

algorithm for solving PSD-CC. We first review the results
of Onn and Schulman [20], which establish the existence of
a polynomial-time algorithm, by analyzing the properties
of a d2-dimensional polytope called the signing zonotope.
We then combine this with a vertex-enumeration procedure
developed by Stinson, Gleich, and Constantine [26].

4.1 Signing Zonotope
A zonotope is the linear projection of a high-dimensional

hypercube into a lower-dimensional vector space. We are
primarily concerned with the signing zonotope introduced by
Onn and Schulman [20], whose vertices directly correspond
to clusterings of the n vectors of a vector partition problem.

Consider a set SV of n vectors v1,v2, . . . ,vn ∈ Rd×1 in
an instance of the vector partition problem. A signing of
these vectors is defined to be a vector σ = (σia,b) ∈ {−1, 1}M ,

where M = n
(
d+1
2

)
. Each entry σia,b uniquely corresponds

to a triplet (vi, a, b), where vi is one of the data points we
are clustering and 1 ≤ a < b ≤ (d + 1) are the indices for
two distinct clusters in a (d+ 1)-clustering of the n vectors.
If b < a, we define σia,b = −σib,a and associate each signing
with a matrix T σ:

T σ =

n∑
i=1

∑
1≤a<b≤d+1

σia,bvi · (ea − eb)
T ∈ Rd×(d+1) , (7)

where ea, eb ∈ R(d+1)×1 are the ath and bth standard basis
vector, respectively. By construction, the row sum of T σ

will be the zero vector, so if we are given the first d columns
of the matrix we will be able to recover the last column
even if it is not given explicitly. We associate with each
signing σ a vector Zσ of length d2 made by stacking the first
d columns of T σ on top of one another. Here we will refer
to this vector as the Z-vector of σ. A signing σ is said to be
extremal if its Z-vector is a vertex of the signing zonotope,
which we define below. Furthermore, Onn and Schulman
proved that for every vertex v of the zonotope, there exists
exactly one extremal signing σ such that v is the Z-vector
of σ. In other words, the extremal signings are in one-to-one
correspondence with the vertices of the zonotope.

The signing zonotope Z for this instance of the vector
partition problem is defined to be

Z = conv{Zσ : σ is a signing of SV } .

In other words, Z is the convex hull of all 2M Z-vectors
of signings of SV . We now state two important results



established by Onn and Schulman [20] about the signing
zonotope.

Theorem 4. (Results from [20]) The following properties
hold regarding the signing zonotope Z introduced above:

1. Each vertex of Z can be mapped to a clustering of
the n vectors in SV , where each cluster is contained in
one of d + 1 convex cones. Additionally, there exists
an extremal signing that maps to the clustering which
optimizes the objective of the vector partition problem.

2. Signing zonotope Z has at most O(nd
2−1) vertices.

All we need then to solve the vector partition problem, and
hence PSD-CC, is to iterate through each extremal signing
of Z, obtain the clustering it corresponds to, and evaluate
objective (4) for that clustering. At the end we output the
clustering with the maximum objective value.

The procedure for associating an extremal signing with
a clustering of SV is given in Proposition 2.3 of Onn and
Schulman’s work [20]. This states that for all i = 1, 2, . . . , n,
there exists a unique index 1 ≤ ci ≤ d+ 1 such that σici,k = 1
for all k 6= ci. Thus vector vi belongs to cluster number ci in
the optimal clustering. With this, we are now able to state
the exact runtime for solving PSD-CC.

Theorem 5. The fixed-rank positive semidefinite correla-

tion clustering problem can be solved in O(nd
2

) time.

Proof. Relying on previous complexity and algorithmic
results regarding zonotopes, in their Corollary 3.3, Onn and
Schulman establish that the (d+ 1)-vector partition problem

can be solved with O(nd
2−1) operations and queries to an

oracle for evaluating the convex objective functional [20].
We now show that it takes O(n) operations to evaluate our

specific oracle function for each of the O(nd
2−1) extremal

signings. In our case, the complexity of the oracle is the
time it takes to evaluate summation (4) for a given extremal
signing σ. Treating d as a fixed constant, this procedure
involves inspecting the M = O(n) entries of σ to identify
a clustering, and O(n) operations to add vectors in each
cluster to obtain the sum points. We require only a constant
number of operations to take dot products of the sum points
and add the results, so the evaluation process takes O(n)

time, and hence the overall process O(nd
2

) time.

4.2 Practical Algorithm
Though theoretically polynomial time, the runtime given

above is impractical for applications. We turn our attention
to an algorithm which approximately solves the PSD-CC
objective, but is much more efficient in practice. We im-
plement a randomized algorithm for sampling vertices of
a zonotope (that will eventually enumerate them all), de-
veloped by Stinson, Gleich, and Constantine [26]. When
mapping a hypercube in RM onto a zonotope in RN , the
basic outline of their procedure is as follows. Form an N×M
matrix G, where each column is a generator of the zonotope,
i.e., G is the linear map that maps the hypercube into a
lower-dimensional space. Given a vector x drawn from a
standard Gaussian distribution, compute v = G sign(GTx),
where sign(u) returns a vector with ±1 entries, reflecting the
signs of the entries of u. The main insight of Stinson, Gleich
and Constantine is that under reasonable assumptions on

G, v will be a vertex of the zonotope. One can construct
the entire zonotope by generating vertices in this way, by
checking whether a given vertex has been previously found,
and continuing until all the vertices have been returned. In
practice, it is better to just approximate the zonotope by
stopping after a certain number of vertices have been found.

We alter this procedure slightly to fit our needs. Note
that the generators of the signing zonotope come from outer
products of the form vi · (er − es)

T , for i = 1, 2, . . . , n and
1 ≤ r < s ≤ d + 1. This product gives a d × (d + 1) ma-
trix with a zero row sum, so taking the first d columns and
stacking them into a vector we get one of the columns of G.
Equation (7) shows that when we form a linear combination
of these generators, where the coefficients of the linear com-
bination are entries of a signing σ, the output is exactly the
Z-vector corresponding to σ. We are ultimately interested
in extremal signings rather than actual zonotope vertices,
so we repeatedly generate vectors σ = sign(GTx). We then
inspect the entries of σ and find the corresponding clustering
of n vectors and thence the clustering’s PSD-CC objective
score (4). We do this for a very large number of randomly
generated extremal signings and output the one with the
highest score. We name our algorithm based on this zonotope
vertex enumeration, ZonoCC, outlined in Algorithm 1.

Algorithm 1 ZonoCC

Input: rows of V : v1,v2, . . . ,vn ∈ Rd, and k ∈ N
Form generator matrix G
Set BestClustering← ∅, BestObjective← 0
for i = 1, 2, . . . , k do

1. Generate standard Gaussian x ∈ RM
2. σ ← sign(GTx)
3. Determine clustering C and objective Cobj from σ
if Cobj > BestObjective then

Set BestClustering← C, BestObjective← Cobj

Output: BestClustering,BestObjective

Our new algorithm is significantly faster than exploring all
vertices of the zonotope. Once we have formed the n

(
d+1
2

)
columns of G, generating σ by matrix multiplication and
determining the corresponding clustering both take O(n)
time since d is a small fixed constant. The overall runtime
is therefore just O(nk), where k is the number of iterations.
Although ZonoCC is not guaranteed to return the optimal
clustering, Stinson, Gleich, and Constantine prove that with
high probability the zonotope vertices that are generated
will tend to be those which most affect the overall shape of
the zonotope [26]. We expect such extremal vertices of the
zonotope to be associated with extremal clusterings of the n
data points, i.e., clusterings with high objective score.

5. NUMERICAL EXPERIMENTS
In this section, we demonstrate the performance of Zono-

CC in a variety of clustering applications. In order to under-
stand how its behavior depends on the rank, as well as the
size of the problem, we begin by illustrating the performance
of Zono-CC on synthetic datasets that are low-dimensional
by construction. We then study correlation clustering in
two real-world scenarios: (i) the volume of search queries
over time for computer science conferences and (ii) stock
market closing prices for S&P 500 companies. Since neither
of these cases is intrinsically low-rank, we study the per-



formance of Zono-CC on low-rank approximations of the
data. Curiously, the best results are achieved on extremely
low-rank approximations. Our goal in both the synthetic
and real-world experiments is to compare our algorithm to
other well-known correlation clustering algorithms and, when
possible, see how well our algorithm is able to approximate
the optimal solution. On the real-world data, we also run
the k-means procedure and find that it is unable to create
the clustering we find via correlation clustering.

For our last experiment, we show how to cluster any un-
signed network with ZonoCC, by first obtaining an embed-
ding of the network’s vertices into a low-dimensional space.
We use this technique to cluster and study the structure of
several networks from the Facebook 100 dataset [27]. Here
we compare ZonoCC against k-means, an algorithm that is
very commonly applied to cluster data in low-dimensional
vector spaces. The goal of this final experiment is not to
show that ZonoCC is better in itself, but to analyze the
results of ZonoCC when both high-quality and low-quality
embeddings of the vertices are applied. We find that with
lower-quality embeddings, ZonoCC is able to better uncover
meaningful structure in the networks than k-means.

Our experiments revolve around the following four algo-
rithms, three of which are specifically intended for correlation
clustering. In our experiments we show runtimes for guidance
only and note that these are non-optimized implementations.
We make code for all of our algorithms and experiments
available at https://github.com/nveldt/PSDCC.

Exact ILP.
For small problems, we compute the optimal solution to the
correlation clustering problem by solving an integer linear
program with the commercial software Gurobi.

CGW.
The 0.7664-approximation for maximizing agreements in
weighted graphs, based on a semidefinite programming re-
laxation, by Charikar, Guruswami, and Wirth [8].

Pivot.
The fast algorithm developed by Ailon, Charikar, and New-
man for ±1 correlation clustering instances [1]. It uniformly
randomly selects a vertex, clusters it with all nodes similar
to it, and repeats. Depending on problem size, we return the
best result from 1000 or 2000 instantiations.

k-means.
The standard Lloyd’s k-means algorithm, as implemented in
MATLAB, with k-means++ initialization [2]. Because of its
speed, we return the best of 100 instantiations.

5.1 Synthetic Datasets
We begin by showing that ZonoCC computes a very good

approximation to the optimal PSD-CC objective even though
it does not test all vertices of the zonotope. We use several
synthetic datasets, each with a true planted clustering, for a
range of values of rank. We also compare the performance
of Pivot and ZonoCC on larger datasets where we can
no longer solve the problem optimally or run the semidef-
inite relaxation. The final experiment on synthetic data
demonstrates how ZonoCC performs for a varying number
of iterations.

For the first experiment we generate datasets with a true
planted clustering perturbed by a small amount of Gaussian
noise. We run each algorithm and measure its objective score
relative to the score of the planted clustering. This setup
allows us to test how well each method is able to perform
in the high signal-to-noise ratio regime. In Figure 2 we
display relative objective scores and runtimes for different
algorithms on synthetic datasets with planted clusters for
a range of rank, d, values from 2 to 20, and problem size
n = 10d. We use 50,000 iterations of ZonoCC and 1000
instantiations of Pivot in each case. For this experiment
ZonoCC outperforms all other methods for matrices up
to rank 15. At this point CGW begins to take over in
objective score, although it does so at the expense of a much
longer runtime. Recall that we are running ZonoCC for a
fixed number of iterations; we would expect to see improved
objective scores for running the algorithm longer as problem
size increases. Note that even for rank 20, ZonoCC still
achieves an objective score that is within 85% of the score of
the planted clustering.

In the second synthetic experiment, we wish to understand
how ZonoCC compares with Pivot as we scale the problems
up in size, for a fixed rank d = 5. This setting renders the
CGW method infeasible, and so we show results only for
ZonoCC with 1000 iterations, and 2000 instantiations of
Pivot in Figure 3. These figures show us that ZonoCC
always outperforms Pivot in objective, with the ratio of
objective scores slowly growing as the problem size increases.
We remark that the running time for each algorithm involves
both generating clusterings as well as checking the objective
value for each clustering. For small values of n, computing
the objective scores becomes a more noticeable fraction of the
computation time. For this reason the runtime of ZonoCC is
much faster than Pivot for small n because we are checking
half the number of clusterings. As problem size increases, we
see that both algorithms roughly scale linearly in n.

In the final synthetic experiment, we study how the ap-
proximation changes as the number of iterations of ZonoCC
increases. The results in Figure 4 show that the algorithm
quickly attains a near-optimal solution, but moves closer to
optimality slowly, as it continues to explore more vertices of
the zonotope. The results displayed are for n = 3000 and
d = 5, though this behavior is typical for most instances.

5.2 Clustering Using Search Query Data
For our first real-world application we use ZonoCC to

cluster top-tier computer science conferences based on search
query volume data. Each search term is either a conference
acronym (e.g., “ICML”), or is an acronym concatenated with
“conference” (e.g., “WWW conference”). For each search
term, we obtain from Google Trends a time series of the
volume of search queries for each month over the course of a
six-year period, 2010–16. This data appears to fluctuate for
repeated API calls, so before clustering we smooth out the
data to capture the overall trend in each time series (using
exponential smoothing with parameter α = 0.5). Second, we
remove the trend across all time series by fitting a quadratic
polynomial to the mean volume. Finally, we ‘z-score’ nor-
malize the time series. We then calculate the correlation
coefficient between each pair of conferences using the pro-
cessed data. This gives us a full-rank matrix of correlation
values, of which we take a low-rank approximation to feed
to ZonoCC.
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Figure 2: Results for ZonoCC (green), CGW (red),
and Pivot (blue) on synthetic datasets with a true
underlying clustering structure. The left plot gives
each algorithm’s approximation to the score of the
planted clustering for d ranging from 2 to 20 and
n = 10d. The right plot shows runtimes for each
method. For both plots we take the median over
five trials. ZonoCC outperforms other algorithms
for all values of d up to 15. At this point CGW finds
a better clustering score, but does so at the expense
of a much longer runtime. Even for high values of
rank, we note that ZonoCC achieves a score that
is 85% of the planted clustering.
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Figure 3: On the left is the ratio of ZonoCC’s score
to Pivot’s on synthetic datasets of increasing size n
and rank d = 5. ZonoCC always has a higher ob-
jective value, and as problem size grows, the ratio
between the objective scores of the two algorithms
increases. On the right are corresponding runtimes:
ZonoCC is faster for problem sizes under n = 10000.
For higher values, times are comparable and scale
roughly linearly in n.

Using the rank-3 approximation gives us the optimal clus-
tering (as determined by the ILP). In this case, both Pivot
and CGW also find the optimal solution. We show the
runtime and objective values in the upper part of Table 1.
The optimal clustering consists of three clusters: the two
large clusters and an outlier set of only one conference, the
International Conference on Computer Graphics Theory and
Application.

It is interesting to observe the significance of the optimal
clustering of this dataset. In Figure 5 we plot for each cluster
the smoothed search query data for all of the conferences in
the cluster. We observe that ZonoCC effectively partitions
the dataset into conferences that have increased in search
query volume over the course of the past six years, and
those that have experienced an overall decrease in search
volume. We expect it to be unsurprising to our readers that
the WWW conference is in the “growing” cluster. We are
unable to find any set of three clusters from k-means that
resembles the result of correlation clustering for this problem,
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Figure 4: Best objective value, as a function of num-
ber of iterations of ZonoCC, for a synthetic dataset
with n = 3000 and d = 5. ZonoCC quickly finds a
good-quality clustering, and slowly improves as we
let the algorithm run longer.

Table 1: Objective scores and runtimes in seconds
for correlation clustering algorithms on two real-
world datasets. Due to the size of the stocks dataset,
we can run only ZonoCC and Pivot on it.

Dataset ZonoCC Pivot CGW ILP

CS Conf. Obj. 7540.0 7540.0 7540.0 7540.0
n = 157 Time 7 1 1380 52

Stocks Obj. 5100.2 5099.5 — —
n = 497 Time 40 20 — —

as k-means tends to generate three clusters of nearly equal
size.

We also run ZonoCC for 50,000 iterations on rank-d ap-
proximations of the correlation clustering matrix, where d
ranges from 2 to 15. As d increases, ZonoCC tends to
form more clusters, but is always able to identify two large
groups of conferences that are highly correlated. In terms of
the correlation clustering objective on the original (and not
low-rank) matrix, ZonoCC decreases in performance only
because we must maintain a constant number of iterations for
the sake of runtime, while the number of zonotope vertices
increases exponentially in d. This behavior is illustrated in
Figure 6: even though these are sub-optimal, the clustering
returned always has two large clusters and small groups of
outliers.
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Figure 5: Smoothed search query data for top-tier
computer science conferences. The partition discov-
ered by ZonoCC splits the conferences into those
whose search volume shows an overall decreasing
trend (left), and an increasing trend (right); WWW
is in the increasing cluster. For each plot we show an
average of the clusters as a thick red line. There is
also a third cluster with only one outlier conference
that is not shown here.
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)
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clustering, and finding the fraction of those pairs
for which the decision to cluster together or clus-
ter apart agrees with the optimal clustering of the
dataset. In all cases, the accuracy of ZonoCC is
above 90%.

5.3 Stock Market Data
The second study we consider is to cluster time series

comprising stock market closing prices on different days of
the year. We obtain prices for 497 stocks from the S&P 500
from Yahoo’s Finance API over the 253 trading days in a year.
We use the correlation between these time series to generate
the input to our correlation clustering experiment. In this
case we are unable to run the ILP to certify the clustering
as optimal, and are unable to run the CGW algorithm due
to insufficient memory. Thus, we just compare ZonoCC
against Pivot: the resulting clusterings are very close, but
ZonoCC finds the better clustering (see the lower part of
Table 1 for the objectives and runtimes).

Similarly to our previous experiment, we discover that
there are two large groups of closely correlated stocks and
a third cluster with an outlier stock. The outlier is “Public
Storage” (PSA), whose stock prices are largely uncorrelated
with all other companies. For comparison, running k-means
with 3 clusters always splits up many of the closely correlated
companies.

5.4 Clustering Networks via Embeddings
We can use ZonoCC to cluster any dataset where each

entry is represented by a vector in a low-dimensional vec-
tor space. This means that our algorithm can be used to
cluster unsigned network data as long as we have a way
to embed the nodes of the network in a low-dimensional
space. Such embeddings have been an active area of re-
search recently [12, 24]. We demonstrate how to combine
ZonoCC with two different graph embedding techniques to
produce large clusterings to analyze several networks from
the Facebook 100 datasets [27].

The purpose of these experiments is not to demonstrate
that ZonoCC achieves a superior clustering result given the
metadata. (Indeed, there is no one algorithm that can achieve
this [23].) Rather we wish to compare ZonoCC and k-means
– in terms of how their clusters reflect the metadata – on low-
quality embeddings from the eigenvectors of the Laplacian
and on a high-quality embedding from node2vec [12].

Datasets. The datasets we use are subsets of the Facebook
graph at certain US universities on a certain day in 2005.

These include an undirected graph and anonymized metadata
regarding each person’s student-or-faculty status, gender,
major, dorm/residence, and graduation year. We run our
experiments on the following networks of different sizes: Reed,
Caltech, Swarthmore, Simmons, and Johns Hopkins. We aim
to cluster this data based on friendship links in the graph –
reflected in the embeddings – and in the process see how the
clusterings might be related to different attributes.

Embeddings. We consider two different ways to embed
each node into a low-dimensional space based on the edge
structure of the graph. The first is to take a subset of the
eigenvectors of the normalized Laplacian of the network:
L = I − D−1/2AD−1/2 where D is the diagonal matrix
of node degrees and I is the identity matrix. If we take
the d eigenvectors corresponding to the smallest nonzero
eigenvalues of L, this gives an embedding in Rd.

The second embedding we consider comes from an algo-
rithmic framework developed by Grover and Leskovec [12]
called node2vec for mapping nodes in a network to a low-
dimensional feature space for representational learning. The
points of the embedding lie in Rd for a user-specified d.

Results. For each of the networks studied, we obtain two
embeddings into R3, one from the normalized Laplacian and
the other using node2vec. For each embedding, we center the
data by subtracting the mean point. This gives us a set of n
vectors with both positive and negative entries. We then run
ZonoCC on each embedding, and compare against running
k-means for the same number of clusters as the output from
ZonoCC.

We analyze our clusterings by observing how the clusters
relate to four of the meta-data attributes: student-or-faculty
status, major, dorm/residence, and graduation year. The
metric we use is the proportion of pairs of people in the same
cluster that share a given metadata attribute. Equivalently,
we can think of this as the probability that two people
selected uniformly at random from the same cluster share
the attribute. We can also compute this metric for the
entire network to get a baseline score. The results for this
experiment are given in Table 2, where the “None” method
places all nodes into a single cluster (which is the baseline
probability). Note that the only meaningful column across
the networks is the Year attribute. In addition, Caltech,
which is a small school with a strong residential population,
shows a similar effect for the dorm attribute. Thus, we focus
our attention on the Year attribute.

The table shows that for node2vec embeddings, k-means
always gives a higher proportion than ZonoCC except for
Caltech and Johns Hopkins, where they are effectively the
same. In contrast, for the embeddings from the Laplacian,
the ZonoCC always shows stronger alignment with the year
attribute. At the very least, this is a demonstration that
ZonoCC and k-means can alternate in performance on
any given clustering task. However, we suspect that this is
evidence that ZonoCC is likely to be better in cases with
weak features (such as the Laplacian).

6. RELATED WORK
Our work builds on several years of research in corre-

lation clustering. The problem was originally introduced
for complete and unweighted graphs by Bansal, Blum, and
Chawla [5], who proved NP-hardness and gave a PTAS for
maximizing agreements and a constant factor approxima-
tion for minimizing disagreements. Charikar, Guruswami,



Table 2: Proportion of pairs of people in the same
cluster that share the given attribute. All networks
display a strong connection between the clusterings
and the graduation year. ZonoCC is better at de-
tecting this trend on the low-quality Laplacian em-
bedding, whereas k-means performs better on the
more sophisticated node2vec embedding.

Network Emb. Method Stud. or
Fac.

Major Dorm Year

Reed — None 0.725 0.037 0.015 0.137

n = 962 N2V ZonoCC 0.698 0.039 0.018 0.278
k-means 0.756 0.039 0.020 0.325

Lap ZonoCC 0.744 0.038 0.018 0.298
k-means 0.745 0.038 0.018 0.290

Caltech — None 0.564 0.063 0.078 0.142

n = 769 N2V ZonoCC 0.576 0.064 0.160 0.151
k-means 0.566 0.065 0.127 0.145

Lap ZonoCC 0.601 0.065 0.087 0.166
k-means 0.578 0.064 0.080 0.146

Swarthmore — None 0.628 0.045 0.049 0.146

n = 1659 N2V ZonoCC 0.620 0.048 0.055 0.262
k-means 0.627 0.049 0.051 0.265

Lap ZonoCC 0.599 0.047 0.042 0.205
k-means 0.599 0.046 0.042 0.197

Simmons — None 0.753 0.043 0.045 0.161

n = 1518 N2V ZonoCC 0.716 0.043 0.064 0.378
k-means 0.717 0.043 0.065 0.379

Lap ZonoCC 0.763 0.044 0.047 0.167
k-means 0.761 0.044 0.045 0.162

Johns Hop. — None 0.618 0.036 0.020 0.134

n = 5180 N2V ZonoCC 0.612 0.041 0.025 0.213
k-means 0.592 0.041 0.024 0.203

Lap ZonoCC 0.632 0.046 0.026 0.229
k-means 0.608 0.042 0.023 0.187

and Wirth [7] later extended these results by improving the
constant factor approximation for minimizing disagreements,
and gave a 0.7664-approximation for maximizing agreements
in general weighted graphs based on a semidefinite program-
ming relaxation. The approximation for minimizing disagree-
ments in unweighted graphs was improved to 2.5 by Ailon,
Charikar, and Newman [1], who at the same time developed
the simplified Pivot algorithm. Recently Asteris et al. [3]
gave a PTAS for maximizing agreements on unweighted bi-
partite graphs by obtaining a low-rank approximation of the
graph’s biadjacency matrix. Our work extends these results
by showing how low-rank structure can also be exploited for
general weighted correlation clustering.

Beyond the correlation clustering literature, our work
shares similarities with other results on NP-hard problems
that become solvable in polynomial time for low-rank positive
semidefinite input. Ferrez, Fukuda, and Liebling gave a poly-
nomial time solution for maximizing a quadratic program
in {0, 1} variables on low-rank positive semidefinite matri-
ces [10], and Markopoulos, Karystinos, and Pados proved an
analogous result for the ±1 binary case [17]. While these
results seek to optimally partition a set of vectors into two

clusters, our work can be seen as a generalization to arbitrar-
ily many clusters.

Our approach in solving low-rank correlation clustering
shares many similarities as well with the spannogram frame-
work for exactly solving combinatorially constrained quadratic
optimization problems on low-rank input [14, 4, 21]. In par-
ticular, for the NP-hard densest subgraph problem, Papail-
iopoulos et al. used this framework to prove that a low-rank
bilinear relaxation of the densest subgraph problem is solv-
able in polynomial time for low-rank input [22].

7. CONCLUSIONS
Our results introduce a new approach to solving general

weighted correlation clustering problems by considering the
rank and structure of the underlying matrix associated with
the problem. This opens a number of new directions in corre-
lation clustering-based approaches. The algorithm we present
offers a fast and accurate method for solving correlation clus-
tering problems where the input can be represented or at
least well approximated by a low-rank positive semidefinite
matrix. We demonstrate a number of applications including
clustering time series data from search queries relating to top-
tier computer science conferences and stock closing prices.
We also demonstrate how this method can be used with
embeddings of network data into low-dimensional spaces.

In future work we wish to prove more rigorous theoreti-
cal approximation results for our methods. Specifically, we
would like to give an approximation bound for k iterations of
ZonoCC, and also give rigorous bounds on the correlation
clustering objective when taking a low-rank approximation.
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